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Qutline

* What is FASR — key innovation?

« What new observables are enabled?

« What are its primary science objectives?
* Who would use FASR?

* What is its operations model?

» Broader perspectives



Nobeyama Radioheliograph
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The Innovation

FASR will perform dynamic, ultra-broadband
Imaging spectroscopy. It will probe the solar
atmosphere from the chromosphere to the
outer corona. It will do so with spatial, spectral,
and temporal resolution matched to the
physical phenomena that occur.



FASR
Specifications
(descope)

FASR A: ~2.5-21 GHz
FASR B: ~0.25-3 GHz
FASR C: ~50-300 MHz

Proposed site is OVRO

Frequency
range

50 MHz - 21 GHz

Data channels,

bandwidth, freq.

channels, int.
time

2/500 MHz/4000/20
ms

A: ~4 '
Number B: ~1g Eﬁgg )palrs)
antennas G- ~15 (105)
A:2m
- B:6m
Size antennas o\ on ties or
similar
Polarization Stokes IV(QU)
Angular
resolution A ETEEEE
Footprint ~3 km
Field of View >0.5 deg




Proposed FASR Site
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New Observables

Imaging spectroscopy enables the exploitation of a number
of techniques to make quantitative measurements of the
magnetic field throughout the solar corona

» Thermal free-free emission
provides measurement of longitudinal field in
quiet Sun regions, active regions postflare loops

* Thermal gyroresonance emission
provides measurement of field strength and constrains
fleld vector in active regions

* Nonthermal gyrosynchrotron emission
Provides measurement of field strength and constrains
the field vector in flaring loops, CME loops

n.b. operative on solar disk and above the limb!

* MHD loop oscillations (coronal seismology)
* Mode coupling phenomenon yield topological constraints
« “Statistical” measurements using polarized radio bursts



Magnetic fields from free-free emission

B, from full resolution maps B, from model

Inversion model data model data Mok et al 2003

NoRH measurement
of AR magnetic field
using free-free
absorption

Gelfreikh et al 2005



The Science

e Coronal Magnetic Fields
o Coronal magnetography
o Spatiotemporal evolution of fields
o Role of electric currents in corona

o Coronal seismology

e High energy solar physics
o Magnetic energy release
o Plasma heating and dynamics

o Electron acceleration and transport
o Origin of SEPs

e Drivers of Space Weather
o Birth & acceleration of CMEs
o Prominence eruptions
o Origin of SEPs

o Fast solar wind streams
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0 100 200 500 1000
Frequsncy (MHz)

1 1.81 1.45 234 2.5x 107 1.47 330

2 0.54 2.05 218.5 1.35 x 107 1.03 265
3 0.03 2.4 219.5 6.5 x 106 0.69 190
4 -1.07 2.8 221 5x10° 0.33 30




The Science

I”

e The “thermal” solar atmosphere
o Coronal heating - nanoflares
o Thermodynamic structure & dynamics
> Formation & structure of filaments

e Solar Wind

Birth in network

o

(¢]

Coronal holes
Fast/slow wind streams

o

(e]

Turbulence and waves

e Synoptic studies
o Radiative inputs to upper atmosphere
o Global magnetic field/dynamo
o Flare statistics




FASR Community

FASR is envisaged as a facility that will support
the solar and heliophysics communities

Moreover, it is quite possible that FASR will
play an operational role in space weather now-
casting and forecasting

To be successful, FASR must “mainstream” the
use of radio imaging and spectroscopic data,
much as Yohkoh did for soft X-ray data, SOHO
did for EUV data, and RHESSI is doing for
hard X-ray data



FASR Operations

Two key goals:

1. Maximize the accessibility and utility of the data to the wider

scientific community — mainstream its use.
* Pipeline data processing to calibrate & reduce data
* Rich suite of applications data bases (plus “raw visibilities™)
« Data products available through web interface/VO
* Provide custom data products, software tools for data
analysis, visualization & modeling
« Student training, postdocs, regular community workshops

2. Minimize the cost and complexity of daily operations.

* Not a Pl/Gl instrument (akin to current NASA missions)

« No night time support — calibration only

« Design instrument with clear operational objectives in mind
- Simplicity
- Reliability
- Maintainability
- Upgradability



Data
Pipeline

Analog IF data
from Antennas

Monitor & Control

Processor Supervisor f

Digital Signal Processing Unit

Engineering Database

Data Packaging Processor

Interim Database

Applications Database
{preliminary calibration apphed)

science center

{mirror)

Quick Look Data Products

Applications Database

{final calibration applied)

Catalog and Metadata I

Products

Permanent Data Archive

FASR User Interface I




Broader perspectives

Ground-based solar physics is in a unique position wrt NSF;
both AST and ATM have historically played a role

AST prioritizes (large) investments in facilities via the NRC
decadal surveys

s ATM interested in expanding and diversifying its UARS
portfolio?

* If so, how are new facilities planned, prioritized, and
funded?

* How will new facility operations be funded?

» What are NSF’s obligations toward aging facilities?

There as been some discussion in the NSF and in the wider
community of placing solar/heliospheric/space weather

science and facilities in a new division, perhaps under GEO.
Good idea?



