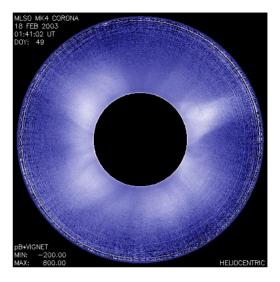
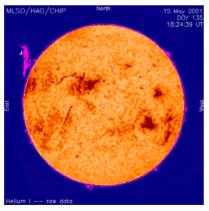


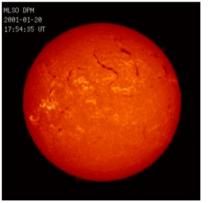
Mauna Loa Solar Observatory (MLSO) Coronal Solar Magnetism Observatory (COSMO)

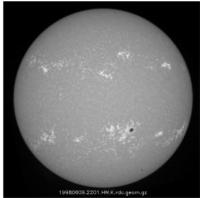

Steven Tomczyk



Mauna Loa Solar Observatory (MLSO)



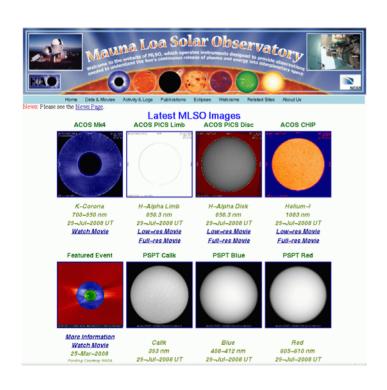

MK4 White Light Corona (1965-present)


PICS Hα Limb

CHIP He-I Chromosphere

PICS $H\alpha$ Chromosphere

PSPT Call Chromosphere



MLSO User Community

MLSO Data Users

295 registered users from 29 countries
Registered users at 28 US universities, 29 foreign universities
>557 publications using MLSO data (>200 in last eight years)

MLSO Web Site

~6200 Hits/day (2.26 million in the past year)

Serves 125 GB/year out of a total archive of 2.5 TB (~2X CEDAR data traffic)

http://mlso.hao.ucar.edu/

Future of MLSO

Aging Instruments and Infrastructure Need Upgrading

Need Additional Capabilities to Address Current Scientific Problems

Coronal Solar Magnetism Observatory

COSMO Motivation

Coronal Magnetism is Responsible for the Sources of Space Weather:

- Solar Flares
- Coronal Mass Ejections
- Energetic Particle Acceleration
- Coronal Heating
- Solar Wind Acceleration

Routine Measurements of Coronal Magnetic Fields are Not Available

Community Involvement

COSMO Science Advisory Committee

Thomas Zurbuchen, U Michigan (Chair)

David Alexander, RICE

Spiro Antiochos, NRL

Jean Arnaud, France

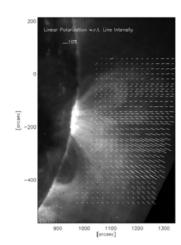
Phil Judge, HAO

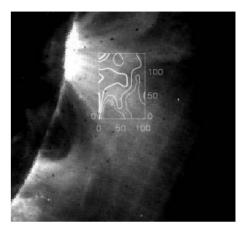
Matt Penn, NOAA

John Raymond, CFA

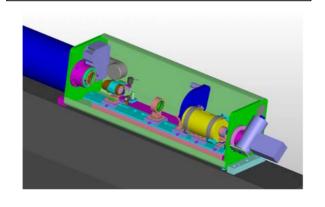
Aad VanBallegooijen, CFA

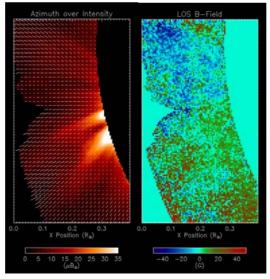
COSMO Science Priorities

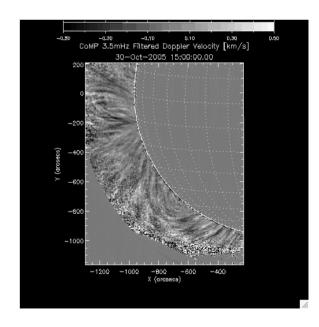

The Community through the COSMO SAC Recommends that COSMO Measure:


- Coronal Magnetic Fields
- Chromospheric Magnetic Fields
- White Light Corona

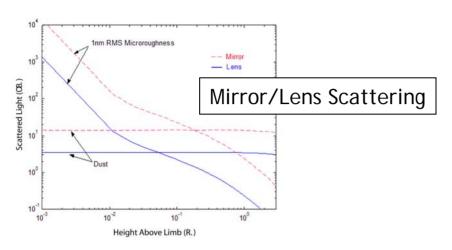
Coronal Magnetic Field Prototype Instruments

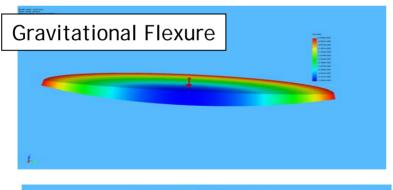

SOLAR-C/OFIS (U of Hawaii)

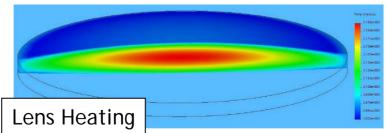


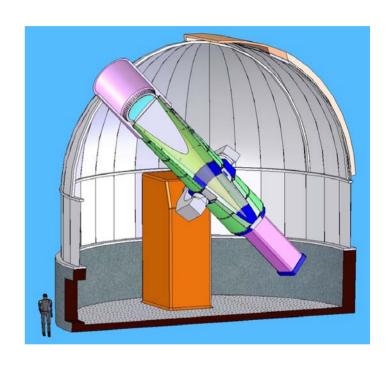


CoMP Instrument (NCAR)




COSMO Requirements


- Prototype Instruments Verify Use of Zeeman Effect in Coronal Emission Lines to Measure Coronal Magnetic Fields
- Need Better Spatial and Temporal Resolution to Meet Science Goals
- More Photons Requires Large Aperture
 (1.5 m) Coronagraph



COSMO Engineering

1.5 m Refractive Coronagraph is Feasible with Current Technology: Nelson et al., SPIE, 2008.

COSMO Engineering

Technical Notes:

- 1) Measurement Errors in Coronal Magnetic Field Parameters
- 2) A FEA of Meter-Class Refracting Objectives for Coronal Polarimetry
- 3) Polarization in Reflecting and Refracting Coronagraphs
- 4) An Analysis of Scattered Light in Reflecting and Refracting Coronagraphs
- 5) Trade Study Summary for Reflecting vs. Refracting Primary Objectives
- 6) Some Considerations for a High Etendue Birefringent Filter
- 7) Scattered Light from Internal Reflection in a Coronagraph Objective Lens
- 8) Baseline Design of a Coronagraph to Measure K-corona Polarization Brightness
- 9) SBM Sky Brightness at Mauna Loa
- 10) Mk IV Scattered Light Analysis
- 11) Baseline Design for a Prominence Magnetometer Proposal
- 12) Prominence and Filament Magnetometry Simulations
- 13) Thermal Analysis of a 1.5 meter f/5 Fused Silica Primary Lens

http://cosmo.ucar.edu/

COSMO Plans

A Facility Dedicated to Routine Measurement of Coronal Magnetic Fields is Required to Advance Understanding of the Causes of Space Weather

A Large Aperture Coronagraph and Associated Instruments are Feasible and Can Meet Science Requirements

Need Money to Build New Facility

Will Close MLSO and Apply Current Operations Resources to COSMO

